On the generalized principal ideal theorem of complex multiplication
نویسندگان
چکیده
In the p-th cyclotomic field Qpn , p a prime number, n ∈ N, the prime p is totally ramified and the only ideal above p is generated by ωn = ζpn − 1, with the primitive p-th root of unity ζpn = e 2πi pn . Moreover these numbers represent a norm coherent set, i.e. NQpn+1/Qpn(ωn+1) = ωn. It is the aim of this article to establish a similar result for the ray class field Kpn of conductor p over an imaginary quadratic number field K where p is the power of a prime ideal in K. Therefore the exponential function has to be replaced by a suitable elliptic function.
منابع مشابه
GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES
The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.
متن کاملCommon Fixed Point Results on Complex-Valued $S$-Metric Spaces
Banach's contraction principle has been improved and extensively studied on several generalized metric spaces. Recently, complex-valued $S$-metric spaces have been introduced and studied for this purpose. In this paper, we investigate some generalized fixed point results on a complete complex valued $S$-metric space. To do this, we prove some common fixed point (resp. fixed point) theorems usin...
متن کاملA CHARACTERIZATION OF BAER-IDEALS
An ideal I of a ring R is called right Baer-ideal if there exists an idempotent e 2 R such that r(I) = eR. We know that R is quasi-Baer if every ideal of R is a right Baer-ideal, R is n-generalized right quasi-Baer if for each I E R the ideal In is right Baer-ideal, and R is right principaly quasi-Baer if every principal right ideal of R is a right Baer-ideal. Therefore the concept of Baer idea...
متن کاملA Simple Proof of Some Generalized Principal Ideal Theorems
Using symmetric algebras we simplify (and slightly strengthen) the Bruns-Eisenbud-Evans “generalized principal ideal theorem” on the height of order ideals of nonminimal generators in a module. We also obtain a simple proof and an extension of a result by Kwieciński, which estimates the height of certain Fitting ideals of modules having an equidimensional symmetric algebra.
متن کاملAlgorithms on Ideal over Complex Multiplication order
We show in this paper that the Gentry-Szydlo algorithm for cyclotomic orders, previously revisited by Lenstra-Silverberg, can be extended to complex-multiplication (CM) orders, and even to a more general structure. This algorithm allows to test equality over the polarized ideal class group, and finds a generator of the polarized ideal in polynomial time. Also, the algorithm allows to solve the ...
متن کامل